Fine temporal brain network structure modularizes and localizes differently in men and women: insights from a novel explainability framework

Author:

Lewis Noah1,Miller Robyn23,Gazula Harshvardhan45,Calhoun Vince123

Affiliation:

1. Georgia Institute of Technology Computational Science and Engineering, , North Ave, 30332, GA , United States

2. Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) , 55 Park Pl NE, 30303, GA , United States

3. Georgia State University , 33 Gilmer St SE, 30303, GA , United States

4. Athinoula A. Martinos Center for Biomedical Imaging , 149 13th Street, 02129, MA , United States

5. Harvard Medical School , 25 Shattuck St, 02115, MA , United States

Abstract

Abstract Deep learning has become an effective tool for classifying biological sex based on functional magnetic resonance imaging (fMRI). However, research on what features within the brain are most relevant to this classification is still lacking. Model interpretability has become a powerful way to understand “black box” deep-learning models, and select features within the input data that are most relevant to the correct classification. However, very little work has been done employing these methods to understand the relationship between the temporal dimension of functional imaging signals and the classification of biological sex. Consequently, less attention has been paid to rectifying problems and limitations associated with feature explanation models, e.g. underspecification and instability. In this work, we first provide a methodology to limit the impact of underspecification on the stability of the measured feature importance. Then, using intrinsic connectivity networks from fMRI data, we provide a deep exploration of sex differences among functional brain networks. We report numerous conclusions, including activity differences in the visual and cognitive domains and major connectivity differences.

Funder

NIH

NSF

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Reference45 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3