Positive Allosteric Modulation of AMPAR by PF-4778574 Produced Rapid Onset Antidepressant Actions in Mice

Author:

Shen Mengxin123,Lv Dan123,Li Shuting123,Zhang Yanhua123,Wang Zhen4,Zhao Chiyu123,Chen Xuejie123,Wang Chuang123ORCID

Affiliation:

1. Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China

2. Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China

3. Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China

4. CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China

Abstract

Abstract It has been reported that fast-acting antidepressants enhance glutamatergic neurotransmission in the prefrontal cortex (PFC) regions via alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activation. However, the precise mechanisms underlying the fast-acting antidepressants lead to an activation of AMPAR pathways remain largely unclear. To address this issue, a novel AMPAR positive allosteric agonist, PF-4778574, was used to test the rapid effects and the role of VGF (nonacronymic)/brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB)/AKT signaling in these actions in mice. We found that PF-4778574 rapidly alleviated chronic unpredictable stress-induced depression-like behaviors in a concentration-dependent manner. In addition, knock down of vesicular glutamate transporter 1 (VGLUT1) in the PFC of mice induced depression-like behaviors, whereas treatment with PF-4778574 was sufficient to alleviate it, indicating a presynaptic VGLUT1 independent effect. Furthermore, we demonstrate that pharmacological inhibitors of AMPAR or of L-type voltage-dependent Ca2+ channel (L-VDCC) blocked the antidepressants’ effect on behaviors and the upregulation on the AMPAR-mediated VGF/BDNF/TrkB/AKT signaling of PF-4778574. Together, our findings indicate that postsynaptic AMPAR activation followed by activation of L-VDCC and subsequent VGF/BDNF/TrkB/AKT signaling are required for the rapid antidepressant effects of PF-4778574. Our data support a promising therapeutic profile for PF-4778574 as a new fast-acting antidepressant.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningbo

Ningbo Municipal Innovation Team of Life Science and Health

Xinmiao Talents Program of Zhejiang

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3