Low-intensity ultrasound stimulation modulates cortical neurovascular coupling in an attention deficit hyperactivity disorder rat model

Author:

Wang Mengran12,Wang Teng12,Li Xin1,Yuan Yi12

Affiliation:

1. School of Electrical Engineering, Yanshan University , Qinhuangdao 066004 , China

2. Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University , Qinhuangdao 066004 , China

Abstract

Abstract Attention deficit hyperactivity disorder is accompanied by changes in cranial nerve function and cerebral blood flow (CBF). Low-intensity ultrasound stimulation can modulate brain neural activity in attention deficit hyperactivity disorder. However, to date, the modulatory effects of low-intensity ultrasound stimulation on CBF and neurovascular coupling in attention deficit hyperactivity disorder have not been reported. To address this question, Sprague-Dawley, Wistar-Kyoto, and spontaneously hypertensive (attention deficit hyperactivity disorder (ADHD) rat model) rats were divided into the control and low-intensity ultrasound stimulation (LIUS) groups. Cortical electrical stimulation was used to induce cortical excitability in different types of rats, and a penetrable laser speckle contrast imaging (LSCI) system and electrodes were used to evaluate the electrical stimulation-induced CBF, cortical excitability, and neurovascular coupling in free-moving rats. The CBF, cortical excitability, and neurovascular coupling (NVC) under cortical electrical stimulation in the attention deficit hyperactivity disorder rats were significantly different from those in the Sprague-Dawley and Wistar-Kyoto rats. We also found that low-intensity ultrasound stimulation significantly interfered with the cortical excitability and neurovascular coupling induced by cortical electrical stimulation in rats with attention deficit hyperactivity disorder. Our findings suggest that neurovascular coupling is a potential biomarker for attention deficit hyperactivity disorder. Furthermore, low-intensity ultrasound stimulation can improve abnormal brain function in attention deficit hyperactivity disorder and lay a research foundation for its application in the clinical treatment of attention deficit hyperactivity disorder.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Medical-Industrial Crossover Special Incubation Project of Yanshan University and The First Hospital of Qinhuangdao

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3