Marmoset Brain ISH Data Revealed Molecular Difference Between Cortical Folding Patterns

Author:

Li Xiao1,Liu Tao23,Li Yujie4,Li Qing5,Wang Xianqiao6,Hu Xintao1,Guo Lei1,Zhang Tuo1,Liu Tianming4

Affiliation:

1. Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi’an 710072, China

2. Center for Genomics and Computational Biology, College of Science, North China University of Science and Technology, 063210, China

3. Center of Computational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China

4. Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA

5. The Information Processing Laboratory, School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China

6. Computational Nano/Bio-Mechanics Lab, College of Engineering, The University of Georgia, Athens, GA 30602, USA

Abstract

AbstractLiterature studies have demonstrated the structural, connectional, and functional differences between cortical folding patterns in mammalian brains, such as convex and concave patterns. However, the molecular underpinning of such convex/concave differences remains largely unknown. Thanks to public access to a recently released set of marmoset whole-brain in situ hybridization data by RIKEN, Japan; this data’s accessibility empowers us to improve our understanding of the organization, regulation, and function of genes and their relation to macroscale metrics of brains. In this work, magnetic resonance imaging and diffusion tensor imaging macroscale neuroimaging data in this dataset were used to delineate convex/concave patterns in marmoset and to examine their structural features. Machine learning and visualization tools were employed to investigate the possible transcriptome difference between cortical convex and concave patterns. Experimental results demonstrated that a collection of genes is differentially expressed in convex and concave patterns, and their expression profiles can robustly characterize and differentiate the two folding patterns. More importantly, neuroscientific interpretations of these differentially expressed genes, as well as axonal guidance pathway analysis and gene enrichment analysis, offer novel understanding of structural and functional differences between cortical folding patterns in different regions from a molecular perspective.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3