High-frequency repetitive transcranial magnetic stimulation promotes ipsilesional functional hyperemia and motor recovery in mice with ischemic stroke

Author:

Liu Li1,Ding Ming12,Wu Junfa1,Zhang Yuwen3,Wang Qianfeng3,Wang Nianhong1,Luo Lu1,Yu Kewei1,Fan Yunhui1,Zhang Jingjun1,Wu Yi1,Xiao Xiao2,Zhang Qun1

Affiliation:

1. Department of Rehabilitation Medicine, Huashan Hospital, Fudan University , Shanghai 200040 , China

2. Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University , Shanghai , China

3. Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University , Shanghai , China

Abstract

Abstract Neurovascular decoupling plays a significant role in dysfunction following an ischemic stroke. This study aimed to explore the effect of low- and high-frequency repetitive transcranial magnetic stimulation on neurovascular remodeling after ischemic stroke. To achieve this goal, we compared functional hyperemia, cerebral blood flow regulatory factors, and neurochemical transmitters in the peri-infract cortex 21 days after a photothrombotic stroke. Our findings revealed that low- and high-frequency repetitive transcranial magnetic stimulation increased the real-time cerebral blood flow in healthy mice and improved neurobehavioral outcomes after stroke. Furthermore, high-frequency (5-Hz) repetitive transcranial magnetic stimulation revealed stronger functional hyperemia recovery and increased the levels of post-synaptic density 95, neuronal nitric oxide synthase, phosphorylated-endothelial nitric oxide synthase, and vascular endothelial growth factor in the peri-infract cortex compared with low-frequency (1-Hz) repetitive transcranial magnetic stimulation. The magnetic resonance spectroscopy data showed that low- and high-frequency repetitive transcranial magnetic stimulation reduced neuronal injury and maintained excitation/inhibition balance. However, 5-Hz repetitive transcranial magnetic stimulation showed more significant regulation of excitatory and inhibitory neurotransmitters after stroke than 1-Hz repetitive transcranial magnetic stimulation. These results indicated that high-frequency repetitive transcranial magnetic stimulation could more effectively promote neurovascular remodeling after stroke, and specific repetitive transcranial magnetic stimulation frequencies might be used to selectively regulate the neurovascular unit.

Funder

National Key Research and Development Program of China

Natural Science Foundation of China

Shanghai Municipal Key Clinical Specialty

Shanghai Sailing Program

Innovative Research Team of High-level Local Universities in Shanghai

111 Project

Shanghai Municipal Science and Technology Major Project

Shanghai Center for Brain Science and Brain-Inspired Technology

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3