Using fractal dimension analysis to assess the effects of normal aging and sex on subregional cortex alterations across the lifespan from a Chinese dataset

Author:

Chen Yiyong1ORCID,Zuo Yizhi2,Kang Shaofang3,Pan Liliang1,Jiang Siyu1,Yan Aohui1,Li Lin2

Affiliation:

1. Ningbo University School of Medicine, , Ningbo, 315211, Zhejiang, PR China

2. Nanjing Medical University Human Anatomy Department, , Nanjing, 211166, Jiangsu, PR China

3. Ningbo University College of Teacher Education, , Ningbo, 315211, Zhejiang, PR China

Abstract

Abstract Fractal dimension (FD) is used to quantify brain structural complexity and is more sensitive to morphological variability than other cortical measures. However, the effects of normal aging and sex on FD are not fully understood. In this study, age- and sex-related differences in FD were investigated in a sample of 448 adults age of 19–80 years from a Chinese dataset. The FD was estimated with the surface-based morphometry (SBM) approach, sex differences were analyzed on a vertex level, and correlations between FD and age were examined. Generalized additive models (GAMs) were used to characterize the trajectories of age-related changes in 68 regions based on the Desikan–Killiany atlas. The SBM results showed sex differences in the entire sample and 3 subgroups defined by age. GAM results demonstrated that the FD values of 51 regions were significantly correlated with age. The trajectories of changes can be classified into 4 main patterns. Our results indicate that sex differences in FD are evident across developmental stages. Age-related trajectories in FD are not homogeneous across the cerebral cortex. Our results extend previous findings and provide a foundation for future investigation of the underlying mechanism.

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3