A multi-frequency approach of the altered functional connectome for autism spectrum disorder identification

Author:

Ding Yupan1,Zhang Ting2,Cao Wenming1,Zhang Lei1ORCID,Xu Xiaowen345

Affiliation:

1. School of Mathematics and Statistics, Chongqing Jiaotong University , Chongqing 400074, China

2. Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital , Qingdao 266042, China

3. Department of Medical Imaging , Tongji Hospital, , Shanghai 200065, China

4. School of Medicine, Tongji University , Tongji Hospital, , Shanghai 200065, China

5. Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine , Shanghai 200065, China

Abstract

Abstract Autism spectrum disorder stands as a multifaceted and heterogeneous neurodevelopmental condition. The utilization of functional magnetic resonance imaging to construct functional brain networks proves instrumental in comprehending the intricate interplay between brain activity and autism spectrum disorder, thereby elucidating the underlying pathogenesis at the cerebral level. Traditional functional brain networks, however, typically confine their examination to connectivity effects within a specific frequency band, disregarding potential connections among brain areas that span different frequency bands. To harness the full potential of interregional connections across diverse frequency bands within the brain, our study endeavors to develop a novel multi-frequency analysis method for constructing a comprehensive functional brain networks that incorporates multiple frequencies. Specifically, our approach involves the initial decomposition of functional magnetic resonance imaging into distinct frequency bands through wavelet transform. Subsequently, Pearson correlation is employed to generate corresponding functional brain networks and kernel for each frequency band. Finally, the classification was performed by a multi-kernel support vector machine, to preserve the connectivity effects within each band and the connectivity patterns shared among the different bands. Our proposed multi-frequency functional brain networks method yielded notable results, achieving an accuracy of 89.1%, a sensitivity of 86.67%, and an area under the curve of 0.942 in a publicly available autism spectrum disorder dataset.

Funder

National Natural Science Foundation of China

Group Building Scientific Innovation Project for Universities in Chongqing

Joint Training Base Construction Project for Graduate Students in Chongqing

Research project of Shanghai Municipal Health Commission

Research and Innovation Program for Graduate Students in Chongqing

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3