Human Cerebral Perfusion, Oxygen Consumption, and Lactate Production in Response to Hypoxic Exposure

Author:

Vestergaard Mark B1,Ghanizada Hashmat2,Lindberg Ulrich1,Arngrim Nanna2,Paulson Olaf B34,Gjedde Albert56,Ashina Messoud24,Larsson Henrik B W14

Affiliation:

1. Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark

2. Danish Headache Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark

3. Neurobiology Research Unit, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark

4. Faculty of Health and Medical Science, Department of Clinical Medicine, University of Copenhagen, Copenhagen 2100, Denmark

5. Faculty of Health and Medical Science, Department of Neuroscience, University of Copenhagen, Copenhagen 2100, Denmark

6. Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark

Abstract

Abstract Exposure to moderate hypoxia in humans leads to cerebral lactate production, which occurs even when the cerebral metabolic rate of oxygen (CMRO2) is unaffected. We searched for the mechanism of this lactate production by testing the hypothesis of upregulation of cerebral glycolysis mediated by hypoxic sensing. Describing the pathways counteracting brain hypoxia could help us understand brain diseases associated with hypoxia. A total of 65 subjects participated in this study: 30 subjects were exposed to poikilocapnic hypoxia, 14 were exposed to isocapnic hypoxia, and 21 were exposed to carbon monoxide (CO). Using this setup, we examined whether lactate production reacts to an overall reduction in arterial oxygen concentration or solely to reduced arterial oxygen partial pressure. We measured cerebral blood flow (CBF), CMRO2, and lactate concentrations by magnetic resonance imaging and spectroscopy. CBF increased (P < 10−4), whereas the CMRO2 remained unaffected (P > 0.076) in all groups, as expected. Lactate increased in groups inhaling hypoxic air (poikilocapnic hypoxia: $0.0136\ \frac{\mathrm{mmol}/\mathrm{L}}{\Delta{\mathrm{S}}_{\mathrm{a}}{\mathrm{O}}_2}$, P < 10−6; isocapnic hypoxia: $0.0142\ \frac{\mathrm{mmol}/\mathrm{L}}{\Delta{\mathrm{S}}_{\mathrm{a}}{\mathrm{O}}_2}$, P = 0.003) but was unaffected by CO (P = 0.36). Lactate production was not associated with reduced CMRO2. These results point toward a mechanism of lactate production by upregulation of glycolysis mediated by sensing a reduced arterial oxygen pressure. The released lactate may act as a signaling molecule engaged in vasodilation.

Funder

Danish Council for Independent Research

Rigshospitalets Forskningspulje and Lundbeck Foundation

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3