Synapsin I Synchronizes GABA Release in Distinct Interneuron Subpopulations

Author:

Forte N12,Binda F12,Contestabile A3,Benfenati F12,Baldelli P24

Affiliation:

1. Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy

2. IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy

3. Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

4. Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy

Abstract

Abstract Neurotransmitters can be released either synchronously or asynchronously with respect to action potential timing. Synapsins (Syns) are a family of synaptic vesicle (SV) phosphoproteins that assist gamma-aminobutyric acid (GABA) release and allow a physiological excitation/inhibition balance. Consistently, deletion of either or both Syn1 and Syn2 genes is epileptogenic. In this work, we have characterized the effect of SynI knockout (KO) in the regulation of GABA release dynamics. Using patch-clamp recordings in hippocampal slices, we demonstrate that the lack of SynI impairs synchronous GABA release via a reduction of the readily releasable SVs and, in parallel, increases asynchronous GABA release. The effects of SynI deletion on synchronous GABA release were occluded by ω-AgatoxinIVA, indicating the involvement of P/Q-type Ca2+channel-expressing neurons. Using in situ hybridization, we show that SynI is more expressed in parvalbumin (PV) interneurons, characterized by synchronous release, than in cholecystokinin or SOM interneurons, characterized by a more asynchronous release. Optogenetic activation of PV and SOM interneurons revealed a specific reduction of synchronous release in PV/SynIKO interneurons associated with an increased asynchronous release in SOM/SynIKO interneurons. The results demonstrate that SynI is differentially expressed in interneuron subpopulations, where it boosts synchronous and limits asynchronous GABA release.

Funder

EU Era-Net Neuron 2017 “Snareopathies” and ITN ECMED

Ministero della Salute Ricerca Finalizzata

Compagnia di San Paolo Torino

Italian Ministry of University and Research

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3