Memory reactivation and suppression modulate integration of the semantic features of related memories in hippocampus

Author:

Morton Neal W1ORCID,Zippi Ellen L2ORCID,Preston Alison R134ORCID

Affiliation:

1. Center for Learning and Memory, The University of Texas at Austin , Austin, TX 78712 , United States

2. Helen Wills Neuroscience Institute, University of California , Berkeley, CA 95064 , United States

3. Department of Psychology, The University of Texas at Austin , Austin, TX 78712 , United States

4. Department of Neuroscience, The University of Texas at Austin , Austin, TX 78712 , United States

Abstract

Abstract Encoding an event that overlaps with a previous experience may involve reactivating an existing memory and integrating it with new information or suppressing the existing memory to promote formation of a distinct, new representation. We used fMRI during overlapping event encoding to track reactivation and suppression of individual, related memories. We further used a model of semantic knowledge based on Wikipedia to quantify both reactivation of semantic knowledge related to a previous event and formation of integrated memories containing semantic features of both events. Representational similarity analysis revealed that reactivation of semantic knowledge related to a prior event in posterior medial prefrontal cortex (pmPFC) supported memory integration during new learning. Moreover, anterior hippocampus (aHPC) formed integrated representations combining the semantic features of overlapping events. We further found evidence that aHPC integration may be modulated on a trial-by-trial basis by interactions between ventrolateral PFC and anterior mPFC, with suppression of item-specific memory representations in anterior mPFC inhibiting hippocampal integration. These results suggest that PFC-mediated control processes determine the availability of specific relevant memories during new learning, thus impacting hippocampal memory integration.

Funder

National Science Foundation

National Institute of Mental Health

National Research Service

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3