Hippocampal blood flow rapidly and preferentially increases after a bout of moderate-intensity exercise in older adults with poor cerebrovascular health

Author:

Palmer Jacqueline A1ORCID,Morris Jill K23ORCID,Billinger Sandra A134ORCID,Lepping Rebecca J2,Martin Laura3,Green Zachary23,Vidoni Eric D3ORCID

Affiliation:

1. University of Kansas Medical Center Department of Neurology, School of Medicine, , 3901 Rainbow Blvd, Kansas City, KS, 66160 , United States

2. University of Kansas Medical Center Department of Physical Therapy, Rehabilitation Science, and Athletic Training, School of Health Professions, , 3901 Rainbow Blvd. Kansas City, KS, 66160 , United States

3. University of Kansas Alzheimer’s Disease Research Center , 4350 Shawnee Mission Parkway, Fairway, KS, 66205 , United States

4. University of Kansas Medical Center Department of Molecular & Integrative Physiology, , 3901 Rainbow Blvd., Kansas City, KS, 66160 , United States

Abstract

Abstract Over the course of aging, there is an early degradation of cerebrovascular health, which may be attenuated with aerobic exercise training. Yet, the acute cerebrovascular response to a single bout of exercise remains elusive, particularly within key brain regions most affected by age-related disease processes. We investigated the acute global and region-specific cerebral blood flow (CBF) response to 15 minutes of moderate-intensity aerobic exercise in older adults (≥65 years; n = 60) using arterial spin labeling magnetic resonance imaging. Within 0–6 min post-exercise, CBF decreased across all regions, an effect that was attenuated in the hippocampus. The exercise-induced CBF drop was followed by a rebound effect over the 24-minute postexercise assessment period, an effect that was most robust in the hippocampus. Individuals with low baseline perfusion demonstrated the greatest hippocampal-specific CBF effect post-exercise, showing no immediate drop and a rapid increase in CBF that exceeded baseline levels within 6–12 minutes postexercise. Gains in domain-specific cognitive performance postexercise were not associated with changes in regional CBF, suggesting dissociable effects of exercise on acute neural and vascular plasticity. Together, the present findings support a precision-medicine framework for the use of exercise to target brain health that carefully considers age-related changes in the cerebrovascular system.

Funder

Leo and Anne Albert Charitable Trust

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3