Subcortical Contribution of Corticospinal Transmission during Visually Guided Switching Movements of the Arm

Author:

Suzuki Shinya12,Nakajima Tsuyoshi1,Irie Shun1,Ariyasu Ryohei1,Ohtsuka Hiroyuki1,Komiyama Tomoyoshi34,Ohki Yukari1

Affiliation:

1. Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan

2. School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan

3. Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan

4. Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan

Abstract

Abstract In animal experiments, the indirect corticospinal tract (CST) system via cervical interneurons has been shown to mediate motor commands for online adjustment of visuomotor behaviors, such as target-reaching. However, it is still unclear whether the similar CST system functions to perform similar motor behaviors in humans. To clarify this, we investigated changes in motor-evoked potentials (MEPs) in the elbow muscles following transcranial magnetic stimulation, transcranial electrical stimulation, or cervicomedullary stimulation while participants executed target-reaching and switching movements. We found that the MEP, whether elicited cortically or subcortically, was modulated depending on the direction of the switching movements. MEP facilitation began around the onset of the switching activities in an agonist muscle. Furthermore, ulnar nerve-induced MEP facilitation, which could be mediated by presumed cervical interneuronal systems, also increased at the onset of MEP facilitation. In a patient with cortical hemianopsia who showed switching movements in the scotoma, the MEPs were facilitated just before the switching activities. Our findings suggested that CST excitation was flexibly tuned with the switching movement initiation, which could partly take place in the subcortical networks, including the presumed cervical interneuronal systems.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3