Affiliation:
1. Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
2. Department of Psychiatry and Psychological Medicine, University Hospital Center Zagreb, 10000 Zagreb, Croatia
Abstract
Abstract
Cytoarchitectonical parcellation of the visual cortex into the striate and extrastriate cortex requires complex histogenetic events within a precise spatio-temporal frame to attain the specification of areal domains and associated thalamocortical connections during the fetal brain development. We analyzed a deep subplate cellular monolayer (subplate “corridor” cells) present during a restricted period of 13–15 postconceptional weeks, showing the 3D caudo-ventro-medial position in the human fetal occipital lobe, corresponding to the segregation point of pulvinocortical and geniculocortical fibers at the prospective area 17/18 border. Immunofluorescence stainings revealed subplate “corridor” cells as the specific class of the deepest subplate neurons (NeuN+, Tbr1+, Cplx3+) expressing axon guidance molecules (Sema-3A+, EphA6+), presumably for the attraction of pulvinocortical axons and the repulsion of geniculocortical axons growing at that time (SNAP25+, Syn+, FN+). Furthermore, quantitative analysis of the subplate “corridor” region of interest, considering cell number, immunofluorescence signal intensity per cell and per region, revealed significant differences to other regions across the tangential circumference of the developing cerebral wall. Thus, our study sheds new light on the deepest subplate sublayer, strategically aligned along the growing axon systems in the prospective visual system, suggesting the establishment of the area 17/18 border by differential thalamocortical input during the fetal brain development.
Funder
Croatian Science Foundation
European Social Fund under the Operational Programme Efficient Human Resources
Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience project
European Union through the European Regional Development Fund
Publisher
Oxford University Press (OUP)
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献