Strong and reliable synaptic communication between pyramidal neurons in adult human cerebral cortex

Author:

Hunt Sarah1,Leibner Yoni2,Mertens Eline J1,Barros-Zulaica Natalí3,Kanari Lida3,Heistek Tim S1,Karnani Mahesh M1,Aardse Romy1,Wilbers René1,Heyer Djai B1ORCID,Goriounova Natalia A1,Verhoog Matthijs B1,Testa-Silva Guilherme1,Obermayer Joshua1,Versluis Tamara1,Benavides-Piccione Ruth4,de Witt-Hamer Philip5,Idema Sander5,Noske David P5,Baayen Johannes C5,Lein Ed S6,DeFelipe Javier4,Markram Henry3,Mansvelder Huibert D1,Schürmann Felix3,Segev Idan2,de Kock Christiaan P J1

Affiliation:

1. Department of Integrative Neurophysiology , Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam , the Netherlands

2. Department of Neurobiology and Edmond and Lily Safra Center for Brain Sciences , The Hebrew University of Jerusalem, 9190501 Jerusalem , Israel

3. Blue Brain Project , Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202 , Switzerland

4. Laboratorio Cajal de Circuitos Corticales , Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón, Madrid 28223 , Spain

5. Neurosurgery Department , Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam , the Netherlands

6. Allen Institute for Brain Science , Seattle, WA 98109 , USA

Abstract

Abstract Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed language circuitry. We find that local connectivity is comparable with mouse layer 2/3 connections in the anatomical homologue (temporal association area), but synaptic connections in human are 3-fold stronger and more reliable (0% vs 25% failure rates, respectively). We developed a theoretical approach to quantify properties of spinous synapses showing that synaptic conductance and voltage change in human dendritic spines are 3–4-folds larger compared with mouse, leading to significant NMDA receptor activation in human unitary connections. This model prediction was validated experimentally by showing that NMDA receptor activation increases the amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in mouse connections. Since NMDA-dependent recurrent excitation facilitates persistent activity (supporting working memory), our data uncovers cortical microcircuit properties in human that may contribute to language processing in MTG.

Funder

National Institutes of Health

Gatsby Charitable Foundation

NWO Gravitation program BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology

Horizon 2020

Center for Neurogenomics and Cognitive Research

Ministerio de Ciencia e Innovación

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Reference110 articles.

1. Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers;Adler;Biol Psychiatry,1998

2. Conservation of brain connectivity and wiring across the mammalian class;Assaf;Nat Neurosci,2020

3. Comparative cellular analysis of motor cortex in human, marmoset and mouse;Bakken;Nature,2021

4. Estimating the readily-releasable vesicle Pool size at synaptic connections in the neocortex;Barros-Zulaica;Front Synaptic Neurosci,2019

5. Experimental evidence for sparse firing in the neocortex;Barth;Trends Neurosci,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3