Novel objects with causal event schemas elicit selective responses in tool- and hand-selective lateral occipitotemporal cortex

Author:

Leshinskaya Anna12ORCID,Bajaj Mira13,Thompson-Schill Sharon L1

Affiliation:

1. University of Pennsylvania Department of Psychology, , 425 S. University Ave, Stephen A Levin Building, Philadelphia, PA 19104 , United States

2. University of California, Davis Center for Neuroscience, , 1544 Newton Court, Room 209, Davis, CA , United States

3. The Johns Hopkins University School of Medicine , 733 N Broadway, Baltimore, MD 21205 , United States

Abstract

Abstract Tool-selective lateral occipitotemporal cortex (LOTC) responds preferentially to images of tools (hammers, brushes) relative to non-tool objects (clocks, shoes). What drives these responses? Unlike other objects, tools exert effects on their surroundings. We tested whether LOTC responses are influenced by event schemas that denote different temporal relations. Participants learned about novel objects embedded in different event sequences. Causer objects moved prior to the appearance of an environmental event (e.g. stars), while Reactor objects moved after an event. Visual features and motor association were controlled. During functional magnetic resonance imaging, participants viewed still images of the objects. We localized tool-selective LOTC and non-tool-selective parahippocampal cortex (PHC) by contrasting neural responses to images of familiar tools and non-tools. We found that LOTC responded more to Causers than Reactors, while PHC did not. We also measured responses to images of hands, which elicit overlapping responses with tools. Across inferior temporal cortex, voxels’ tool and hand selectivity positively predicted a preferential response to Causers. We conclude that an event schema typical of tools is sufficient to drive LOTC and that category-preferential responses across the temporal lobe may reflect relational event structures typical of those domains.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3