Differential involvement of the anterior and posterior hippocampus, parahippocampus, and retrosplenial cortex in making precise judgments of spatial distance and object size for remotely acquired memories of environments and objects

Author:

Ziegler Marilyne G1,Liu Zhong-Xu2ORCID,Arsenault Jessica3,Dang Christa1ORCID,Grady Cheryl134ORCID,Rosenbaum R Shayna35ORCID,Moscovitch Morris13ORCID

Affiliation:

1. University of Toronto Psychology Department, , Toronto M5S 1A1 , Canada

2. University of Michigan–Dearborn Department of Behavioral Sciences, , 4901 Evergreen RD, Dearborn , United States

3. Rotman Research Institute at Baycrest Health Sciences , Toronto M6A 2E1 , Canada

4. University of Toronto Department of Psychiatry, , Toronto M5T 1R8 , Canada

5. York University Department of Psychology and Centre for Vision Research, , Toronto M3J 1P3 , Canada

Abstract

AbstractThe hippocampus is known to support processing of precise spatial information in recently learned environments. It is less clear, but crucial for theories of systems consolidation, to know whether it also supports processing of precise spatial information in familiar environments learned long ago and whether such precision extends to objects and numbers. In this fMRI study, we asked participants to make progressively more refined spatial distance judgments among well-known Toronto landmarks (whether landmark A is closer to landmark B or C) to examine hippocampal involvement. We also tested whether the hippocampus was similarly engaged in estimating magnitude regarding sizes of familiar animals and numbers. We found that the hippocampus was only engaged in spatial judgment. Activation was greater and lasted longer in the posterior than anterior hippocampus, which instead showed greater modulation as discrimination between spatial distances became more fine grained. These findings suggest that the anterior and posterior hippocampus have different functions which are influenced differently by estimation of differential distance. Similarly, parahippocampal-place-area and retrosplenial cortex were involved only in the spatial condition. By contrast, activation of the intraparietal sulcus was modulated by precision in all conditions. Therefore, our study supports the idea that the hippocampus and related structures are implicated in retrieving and operating even on remote spatial memories whenever precision is required, as posted by some theories of systems consolidation.

Funder

Canadian Institutes of Health Research

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3