Inhibition of Autism-Related Crm1 Disrupts Mitosis and Induces Apoptosis of the Cortical Neural Progenitors

Author:

Li Xue12,Feng Yue12,Yan Meifang12,Tu Xiaomeng12,Xie Bin12,Ni Fangfang12,Qu Chunsheng3,Chen Jie-Guang12

Affiliation:

1. School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China

2. State Key Laboratory of Optometry, Ophthalmology and Vision Science and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang 325027, P.R. China

3. Clinical Laboratory of Lishui People’s Hospital, Sixth Affiliated Hospital, Wenzhou Medical University, LiShui, Zhejiang 323000, China

Abstract

Abstract De novo microdeletion of chromosome 2p15–16.1 presents clinically recognizable phenotypes that include mental retardation, autism, and microcephaly. Chromosomal maintenance 1 (CRM1) is a gene commonly missing in patients with 2p15–16.1 microdeletion and one of two genes found in the smallest deletion case. In this study, we investigate the role and mechanism of Crm1 in the developing mouse brain by inhibiting the protein or knocking down the gene in vivo. Inhibition of Crm1 reduces the proliferation and increases p53-dependent apoptosis of the cortical neural progenitors, thereby impeding the growth of embryonic cerebral cortex. Live imaging of mitosis in ex vivo embryonic brain slices reveals that inhibition of CRM1 arrests the cortical progenitors at metaphase. The arrested cells eventually slip into a pseudo-G1 phase without chromosome segregation. The mitotic slippage cells are marked by persistent expression of the spindle assembly checkpoint (SAC), repressing of which rescues the cells from apoptosis. Our study reveals that activating the SAC and inducing the mitotic slippage may lead to apoptosis of the cortical neural progenitors. The resulting cell death may well contribute to microcephaly associated with microdeletion of chromosome 2p15–16.1 involving CRM1.

Funder

National Natural Science Foundation of China

State Key Laboratory of Ophthalmology, Optometry and Visual Science

Wenzhou Medical University

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3