A stable sensory map emerges from a dynamic equilibrium of neurons with unstable tuning properties

Author:

Chambers Anna R1,Aschauer Dominik F1,Eppler Jens-Bastian2ORCID,Kaschube Matthias2,Rumpel Simon1ORCID

Affiliation:

1. Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz , Duesbergweg 6, Mainz 55128 , Germany

2. Frankfurt Institute for Advanced Studies and Department of Computer Science, Goethe University Frankfurt , Ruth-Moufang-Straße 1, Frankfurt am Main 60438 , Germany

Abstract

Abstract Recent long-term measurements of neuronal activity have revealed that, despite stability in large-scale topographic maps, the tuning properties of individual cortical neurons can undergo substantial reformatting over days. To shed light on this apparent contradiction, we captured the sound response dynamics of auditory cortical neurons using repeated 2-photon calcium imaging in awake mice. We measured sound-evoked responses to a set of pure tone and complex sound stimuli in more than 20,000 auditory cortex neurons over several days. We found that a substantial fraction of neurons dropped in and out of the population response. We modeled these dynamics as a simple discrete-time Markov chain, capturing the continuous changes in responsiveness observed during stable behavioral and environmental conditions. Although only a minority of neurons were driven by the sound stimuli at a given time point, the model predicts that most cells would at least transiently become responsive within 100 days. We observe that, despite single-neuron volatility, the population-level representation of sound frequency was stably maintained, demonstrating the dynamic equilibrium underlying the tonotopic map. Our results show that sensory maps are maintained by shifting subpopulations of neurons “sharing” the job of creating a sensory representation.

Funder

DFG SPP 2041

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Reference60 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3