Bilateral connections from the amygdala to extrastriate visual cortex in the marmoset monkey

Author:

Teymornejad Sadaf12,Majka Piotr3,Worthy Katrina H12,Atapour Nafiseh12,Rosa Marcello G P12

Affiliation:

1. Department of Physiology and Neuroscience Program , Biomedicine Discovery Institute, , 26 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia

2. Monash University , Biomedicine Discovery Institute, , 26 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia

3. Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences , 3 Pasteur Street, 02-093 Warsaw, Poland

Abstract

Abstract It is known that the primate amygdala forms projections to many areas of the ipsilateral cortex, but the extent to which it forms connections with the contralateral visual cortex remains less understood. Based on retrograde tracer injections in marmoset monkeys, we report that the amygdala forms widespread projections to the ipsilateral extrastriate cortex, including V1 and areas in both the dorsal (MT, V4T, V3a, 19M, and PG/PFG) and the ventral (VLP and TEO) streams. In addition, contralateral projections were found to target each of the extrastriate areas, but not V1. In both hemispheres, the tracer-labeled neurons were exclusively located in the basolateral nuclear complex. The number of labeled neurons in the contralateral amygdala was small relative to the ipsilateral connection (1.2% to 5.8%). The percentage of contralateral connections increased progressively with hierarchical level. An injection in the corpus callosum demonstrated that at least some of the amygdalo–cortical connections cross through this fiber tract, in addition to the previously documented path through the anterior commissure. Our results expand knowledge of the amygdalofugal projections to the extrastriate cortex, while also revealing pathways through which visual stimuli conveying affective content can directly influence early stages of neural processing in the contralateral visual field.

Funder

National Health and Medical Research Council

N. Atapour

Australian Research Council

National Science Centre

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3