Electrophysiological Evidence for a Common Magnitude Representation of Spatiotemporal Information in Working Memory

Author:

Cui Minghui1,Peng Chunhua2,Huang Mei3,Chen Youguo1

Affiliation:

1. Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China

2. Laboratory of Emotion and Mental Health, Chongqing University of Arts and Sciences, Chongqing 402160, China

3. Research Institute of Teacher Development, Faculty of College of Teacher Education, Southwest University, Chongqing 400715, China

Abstract

Abstract Spatiotemporal interference has attracted increasing attention because it provides a window for studying the neural representation of magnitude in the brain. We aimed to identify the neural basis of spatiotemporal interference using a Kappa effect task in which two circles were presented in sequence with two time intervals and three space distances. Participants reproduced the time intervals while ignoring the space distance when electroencephalogram signals were recorded synchronously. The behavior results showed that production time increased with time interval and space distance. Offset of the time intervals elicited typical P2 and P3b components. Larger parietal P2 and P3b amplitudes were elicited by the combination of longer time intervals and longer space distances. The parietal P2 and P3b amplitudes were positively correlated with the production time, and the corresponding neural source was located in the parietal cortex. The results suggest that the parietal P2 and P3b index updates a common representation of spatiotemporal information in working memory, which provides electrophysiological evidence for the mechanisms underlying spatiotemporal interferences. Our study supports a theory of magnitude, in which different dimensions can be integrated into a common magnitude representation in a generalized magnitude system that is localized at the parietal cortex.

Funder

Humanities and Social Science Youth Foundation of the Ministry of Education of China

Fundamental Research Funds for the Central Universities

Major Project of National Ethnic Education Research

Social Science Planning Project in Chongqing

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Reference88 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3