Altered development of structural MRI connectome hubs at near-term age in very and moderately preterm infants

Author:

Jang Yong Hun1,Kim Hyuna1,Lee Joo Young1,Ahn Ja-Hye2,Chung Ai Wern34,Lee Hyun Ju2

Affiliation:

1. Hanyang University Graduate School of Biomedical Science and Engineering Department of Translational Medicine, , Seoul 04763 , Republic of Korea

2. Hanyang University College of Medicine Department of Pediatrics, Hanyang University Hospital, , Seoul 04763 , Republic of Korea

3. Harvard Medical School Fetal Neonatal-Neuroimaging and Developmental Science Center, Boston Children’s Hospital, , Boston, MA 02115 , USA

4. Harvard Medical School Department of Pediatrics, Boston Children’s Hospital, , Boston, MA 02115 , USA

Abstract

Abstract Preterm infants may exhibit altered developmental patterns of the brain structural network by endogenous and exogenous stimuli, which are quantifiable through hub and modular network topologies that develop in the third trimester. Although preterm brain networks can compensate for white matter microstructural abnormalities of core connections, less is known about how the network developmental characteristics of preterm infants differ from those of full-term infants. We identified 13 hubs and 4 modules and revealed subtle differences in edgewise connectivity and local network properties between 134 preterm and 76 full-term infants, identifying specific developmental patterns of the brain structural network in preterm infants. The modules of preterm infants showed an imbalanced composition. The edgewise connectivity in preterm infants showed significantly decreased long- and short-range connections and local network properties in the dorsal superior frontal gyrus. In contrast, the fusiform gyrus and several nonhub regions showed significantly increased wiring of short-range connections and local network properties. Our results suggested that decreased local network in the frontal lobe and excessive development in the occipital lobe may contribute to the understanding of brain developmental deviances in preterm infants.

Funder

National Research Foundation of Korea Grant funded by the Korean Government MSIT

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3