Sirt1 attenuates astrocyte activation via modulating Dnajb1 and chaperone-mediated autophagy after closed head injury

Author:

Zhang Zhuo1,Zhang Xu1,Wu Xin1,Zhang Yan1,Lu Jie1,Li Dan1

Affiliation:

1. Department of Human Anatomy , College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province , P.R. China

Abstract

Abstract Our previous study indicates that Silent information regulator 1 (Sirt1) is involved in macroautophagy by upregulating light chain 3 (LC3) expression in astrocyte to exert a neuroprotective effect. Chaperon-mediated autophagy (CMA), another form of autophagy, is also upregulated after brain injury. However, little is known about the role of Sirt1 in regulation of the CMA. In the present study, an in vivo model of closed head injury (CHI) and an in vitro model of primary cortical astrocyte stimulated with interleukin-1β were employed to mimic the astrocyte activation induced by traumatic brain injury. Lentivirus carrying target complementary DNA (cDNA) or short hairpin RNA (shRNA) sequence was used to overexpress Sirt1 or knockdown DnaJ heat shock protein family member B1 (Dnajb1) (a molecular chaperone). We found that Sirt1 overexpression ameliorated neurological deficits, reduced tissue loss, and attenuated astrocyte activation after CHI, which was reversed by Dnajb1-shRNA administration. The upregulation of CMA activity induced by CHI in vivo and in vitro was inhibited after Dnajb1 knockdown. Sirt1 potently promoted CMA activity via upregulating Dnajb1 expression. Mechanically, Sirt1 could interact with Dnajb1 and modulate the deacetylation and ubiquitination of Dnajb1. These findings collectively suggest that Sirt1 plays a protective role against astrocyte activation, which may be associated with the regulation of the CMA activity via modulating the deacetylation and ubiquitination of Dnajb1 after CHI.

Funder

Doctoral Start-up Foundation of Liaoning Province

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3