Development of human hippocampal subfield microstructure and relation to associative inference

Author:

Vinci-Booher Sophia12ORCID,Schlichting Margaret L34,Preston Alison R4,Pestilli Franco4

Affiliation:

1. Indiana University, Psychological and Brain Sciences , 1101 E. 10th St., Bloomington, Indiana, 47405, United States

2. Vanderbilt University, Psychology and Human Development , 230 Appleton Pl., Nashville, TN 37203, United States

3. University of Toronto , Psychology, 100 St. George St., Toronto, ON M5S 3G3, Canada

4. University of Texas at Austin , Psychology, 108 E. Dean Keeton Street, Austin, TX 78712, United States

Abstract

Abstract The hippocampus is a complex brain structure composed of subfields that each have distinct cellular organizations. While the volume of hippocampal subfields displays age-related changes that have been associated with inference and memory functions, the degree to which the cellular organization within each subfield is related to these functions throughout development is not well understood. We employed an explicit model testing approach to characterize the development of tissue microstructure and its relationship to performance on 2 inference tasks, one that required memory (memory-based inference) and one that required only perceptually available information (perception-based inference). We found that each subfield had a unique relationship with age in terms of its cellular organization. While the subiculum (SUB) displayed a linear relationship with age, the dentate gyrus (DG), cornu ammonis field 1 (CA1), and cornu ammonis subfields 2 and 3 (combined; CA2/3) displayed nonlinear trajectories that interacted with sex in CA2/3. We found that the DG was related to memory-based inference performance and that the SUB was related to perception-based inference; neither relationship interacted with age. Results are consistent with the idea that cellular organization within hippocampal subfields might undergo distinct developmental trajectories that support inference and memory performance throughout development.

Funder

National Science Foundation

National Institutes of Health

Department of Defense

Wellcome Trust

Kavli Foundation

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3