Prefrontal Control of Proactive and Reactive Mechanisms of Visual Suppression

Author:

Di Bello Fabio12,Ben Hadj Hassen Sameh1,Astrand Elaine13,Ben Hamed Suliann1ORCID

Affiliation:

1. Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR5229, 69675 Bron Cedex, France

2. Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy

3. School of Innovation, Design, and Engineering, Mälardalen University, IDT, 721 23 Västerås, Sweden

Abstract

Abstract In everyday life, we are continuously struggling at focusing on our current goals while at the same time avoiding distractions. Attention is the neuro-cognitive process devoted to the selection of behaviorally relevant sensory information while at the same time preventing distraction by irrelevant information. Distraction can be prevented proactively, by strategically prioritizing task-relevant information at the expense of irrelevant information, or reactively, by suppressing the ongoing processing of distractors. The distinctive neuronal signature of these suppressive mechanisms is still largely unknown. Thanks to machine-learning decoding methods applied to prefrontal cortical activity, we monitor the dynamic spatial attention with an unprecedented spatial and temporal resolution. We first identify independent behavioral and neuronal signatures for long-term (learning-based spatial prioritization) and short-term (dynamic spatial attention) mechanisms. We then identify distinct behavioral and neuronal signatures for proactive and reactive suppression mechanisms. We find that while distracting task-relevant information is suppressed proactively, task-irrelevant information is suppressed reactively. Critically, we show that distractor suppression, whether proactive or reactive, strongly depends on the implementation of both long-term and short-term mechanisms of selection. Overall, we provide a unified neuro-cognitive framework describing how the prefrontal cortex deals with distractors in order to flexibly optimize behavior in dynamic environments.

Funder

LABEX CORTEX

Université de Lyon, within the program Investissements d’Avenir

French National Research Agency

Jean-Luc Charieau and Fidji Francioly

European Community Council

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3