Passive Localization of the Central Sulcus during Sleep Based on Intracranial EEG

Author:

Alkawadri RafeedORCID,Zaveri Hitten P,Sheth Kevin N,Spencer Dennis D

Abstract

Abstract We test the performance of a novel operator-independent EEG-based method for passive identification of the central sulcus (CS) and sensorimotor (SM) cortex. We studied seven patients with intractable epilepsy undergoing intracranial EEG (icEEG) monitoring, in whom CS localization was accomplished by standard methods. Our innovative approach takes advantage of intrinsic properties of the primary motor cortex (MC), which exhibits enhanced icEEG band-power and coherence across the CS. For each contact, we computed a composite power, coherence, and entropy values for activity in the high gamma band (80–115) Hz of 6–10 min of NREM sleep. Statistically transformed EEG data values that did not reach a threshold (th) were set to 0. We computed a metric M based on the transformed values and the mean Euclidian distance of each contact from contacts with Z-scores higher than 0. The last step was implemented to accentuate local network activity. The SM cortex exhibited higher EEG-band-power than non-SM cortex (P < 0.0002). There was no significant difference between the motor/premotor and sensory cortices (P < 0.47). CS was localized in all patients with 0.4 < th < 0.6. The primary hand and leg motor areas showed the highest metric values followed by the tongue motor area. Higher threshold values were specific (94%) for the anterior bank of the CS but not sensitive (42%). Intermediate threshold values achieved an acceptable trade-off (0.4: 89% specific and 70% sensitive).

Funder

American Epilepsy Society

National Center for Advancing Translational Science

National Institute of Health

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3