Spatiotemporal patterns of population response in the visual cortex under isoflurane: from wakefulness to loss of consciousness

Author:

Margalit Shany Nivinsky1,Golomb Neta Gery2,Tsur Omer1,Ben Yehoshua Eve1,Raz Aeyal2ORCID,Slovin Hamutal1ORCID

Affiliation:

1. The Gonda Multidisciplinary Brain Research Center , Bar-Ilan University, Ramat Gan 5290002 , Israel

2. Department of Anesthesiology , Rambam Health Care Campus, Haifa, 3109601, Israel and The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel

Abstract

Abstract Anesthetic drugs are widely used in medicine and research to mediate loss of consciousness (LOC). Isoflurane is a commonly used anesthetic drug; however, its effects on cortical sensory processing, in particular around LOC, are not well understood. Using voltage-sensitive dye imaging, we measured visually evoked neuronal population response from the visual cortex in awake and anesthetized mice at 3 increasing concentrations of isoflurane, thus controlling the level of anesthesia from wakefulness to deep anesthesia. At low concentration of isoflurane, the effects on neuronal measures were minor relative to the awake condition. These effects augmented with increasing isoflurane concentration, while around LOC point, they showed abrupt and nonlinear changes. At the network level, we found that isoflurane decreased the stimulus-evoked intra-areal spatial spread of local neural activation, previously reported to be mediated by horizontal connections, and also reduced intra-areal synchronization of neuronal population. The synchronization between different visual areas decreased with higher isoflurane levels. Isoflurane reduced the population response amplitude and prolonged their latencies while higher visual areas showed increased vulnerability to isoflurane concentration. Our results uncover the changes in neural activity and synchronization at isoflurane concentrations leading to LOC and suggest reverse hierarchical shutdown of cortical areas.

Funder

Israel Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3