Cooperation Makes a Group be More Creative

Author:

Lu Kelong1,Xue Hua1,Nozawa Takayuki2,Hao Ning1

Affiliation:

1. Shanghai Key Laboratory of Brain Functional Genomics, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China

2. Collaborative Research Center for Happiness Co-Creation Society through Intelligent Communications, Tokyo Institute of Technology, Tokyo, Japan

Abstract

Abstract This study investigated how cooperative and competitive interaction modes affect the group creative performance. The participants were recruited as dyads to solve 2 problems either demanding divergent thinking (alternative uses task, AUT) or not (object characteristic task, OCT). The dyads solved 1 of the 2 problems in the cooperative mode and the other in the competitive mode. Functional near-infrared spectroscopy (fNIRS)-based hyperscanning was used to record their neural activities in the prefrontal and right temporal–parietal junction (r-TPJ) regions. Results revealed the dyads showed higher AUT fluency, AUT originality, OCT fluency, and cooperation level in the cooperative mode than in the competitive mode. The fNIRS data revealed increased (task-baseline) interpersonal brain synchronization (IBS) in the right dorsolateral prefrontal cortex (r-DLPFC) and r-TPJ, only for dyads in the AUT/cooperation condition. In both r-DLPFC and r-TPJ, the IBS of dyads in the AUT/cooperation condition was stronger than in the AUT/competition and OCT/cooperation. Moreover, a stronger IBS was evoked between the regions in prefrontal and posterior temporal regions in the AUT/cooperation condition, as compared with the competition mode. These findings suggest that enhanced IBS may underlie the positive effects of cooperation as compared with the competition in terms of group creativity.

Funder

Shanghai Education Development Foundation

Shanghai Municipal Education Commission

Philosophy and Social Science Foundation of Shanghai

Humanity and Social Science foundation of Ministry of Education of China

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3