Brain-constrained neural modeling explains fast mapping of words to meaning

Author:

Constant Marika1234,Pulvermüller Friedemann1456,Tomasello Rosario16ORCID

Affiliation:

1. WE4, Freie Universität Berlin Brain Language Laboratory, Department of Philosophy and Humanities, , Habelschwerdter Allee 45, 14195 Berlin , Germany

2. Humboldt-Universität zu Berlin Faculty of Life Sciences, Department of Psychology, , Unter den Linden 6, 10099 Berlin , Germany

3. Bernstein Center for Computational Neuroscience Berlin , Philippstraße 13 Haus 6, 10115 Berlin , Germany

4. Humboldt-Universität zu Berlin Berlin School of Mind and Brain, , Luisenstraße 56, 10117 Berlin , Germany

5. Einstein Center for Neurosciences Berlin , Charitéplatz 1, 10117 Berlin , Germany

6. Humboldt-Universität zu Berlin Cluster of Excellence ‘Matters of Activity. Image Space Material’, , Unter den Linden 6, 10099 Berlin , Germany

Abstract

Abstract Although teaching animals a few meaningful signs is usually time-consuming, children acquire words easily after only a few exposures, a phenomenon termed “fast-mapping.” Meanwhile, most neural network learning algorithms fail to achieve reliable information storage quickly, raising the question of whether a mechanistic explanation of fast-mapping is possible. Here, we applied brain-constrained neural models mimicking fronto-temporal-occipital regions to simulate key features of semantic associative learning. We compared networks (i) with prior encounters with phonological and conceptual knowledge, as claimed by fast-mapping theory, and (ii) without such prior knowledge. Fast-mapping simulations showed word-specific representations to emerge quickly after 1–10 learning events, whereas direct word learning showed word-meaning mappings only after 40–100 events. Furthermore, hub regions appeared to be essential for fast-mapping, and attention facilitated it, but was not strictly necessary. These findings provide a better understanding of the critical mechanisms underlying the human brain’s unique ability to acquire new words rapidly.

Funder

Germany’s Excellence Strategy

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3