Posterior parietal cortex is causally involved in reward valuation but not in probability weighting during risky choice

Author:

Panidi Ksenia1ORCID,Vorobiova Alicia N1,Feurra Matteo1,Klucharev Vasily12

Affiliation:

1. Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University , ul. Myasnitskaya 20, Moscow 101000 , Russian Federation

2. Graduate School of Business, HSE University , ul. Shabolovka, 26, Moscow 119049 , Russian Federation

Abstract

Abstract This study provides evidence that the posterior parietal cortex is causally involved in risky decision making via the processing of reward values but not reward probabilities. In the within-group experimental design, participants performed a binary lottery choice task following transcranial magnetic stimulation of the right posterior parietal cortex, left posterior parietal cortex, and a right posterior parietal cortex sham (placebo) stimulation. The continuous theta-burst stimulation protocol supposedly downregulating the cortical excitability was used. Both, mean–variance and the prospect theory approach to risky choice showed that the posterior parietal cortex stimulation shifted participants toward greater risk aversion compared with sham. On the behavioral level, after the posterior parietal cortex stimulation, the likelihood of choosing a safer option became more sensitive to the difference in standard deviations between lotteries, compared with sham, indicating greater risk avoidance within the mean–variance framework. We also estimated the shift in prospect theory parameters of risk preferences after posterior parietal cortex stimulation. The hierarchical Bayesian approach showed moderate evidence for a credible change in risk aversion parameter toward lower marginal reward value (and, hence, lower risk tolerance), while no credible change in probability weighting was observed. In addition, we observed anecdotal evidence for a credible increase in the consistency of responses after the left posterior parietal cortex stimulation compared with sham.

Funder

International Laboratory of Social Neurobiology ICN HSE RF Government

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3