Drifts in Prefrontal and Parietal Neuronal Activity Influence Working Memory Judgments

Author:

Li Sihai1ORCID,Constantinidis Christos1234,Qi Xue-Lian1

Affiliation:

1. Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA

2. Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA

3. Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA

4. Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA

Abstract

Abstract The dorsolateral prefrontal cortex (dlPFC) plays a critical role in spatial working memory and its activity predicts behavioral responses in delayed response tasks. Here, we addressed if this predictive ability extends to other working memory tasks and if it is present in other brain areas. We trained monkeys to remember the location of a stimulus and determine whether a second stimulus appeared at the same location or not. Neurophysiological recordings were performed in the dorsolateral prefrontal cortex and posterior parietal cortex (PPC). We hypothesized that random drifts causing the peak activity of the network to move away from the first stimulus location and toward the location of the second stimulus would result in categorical errors. Indeed, for both areas, in nonmatching trials, when the first stimulus appeared in a neuron’s preferred location, the neuron showed significantly higher firing rates in correct than in error trials; and vice versa, when the first stimulus appeared at a nonpreferred location, activity in error trials was higher than in correct. The results indicate that the activity of both dlPFC and PPC neurons is predictive of categorical judgments of information maintained in working memory, and neuronal firing rate deviations are revealing of the contents of working memory.

Funder

National Eye Institute and National Institute of Mental Health

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3