Affiliation:
1. Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan
2. Sophia University, Tokyo 102-8554, Japan
Abstract
Abstract
Somatosensory signals play roles in the fine control of dexterous movements through a somatosensory–motor integration mechanism. While skilled individuals are typically characterized by fine-tuned somatosensory functions and dexterous motor skills, it remains unknown whether and in what manner their bridging mechanism, the tactile–motor and proprioceptive–motor integration functions, plastically changes through extensive sensorimotor experiences. Here, we addressed this issue by comparing physiological indices of these functions between pianists and nonmusicians. Both tactile and proprioceptive stimuli to the right index finger inhibited corticospinal excitability measured by a transcranial magnetic stimulation method. However, the tactile and proprioceptive stimuli exerted weaker and stronger inhibitory effects, respectively, on corticospinal excitability in pianists than in nonmusicians. The results of the electroencephalogram measurements revealed no significant group difference in the amplitude of cortical responses to the somatosensory stimuli around the motor and somatosensory cortices, suggesting that the group difference in the inhibitory effects reflects neuroplastic adaptation of the somatosensory–motor integration functions in pianists. Penalized regression analyses further revealed an association between these integration functions and motor performance in the pianists, suggesting that extensive piano practice reorganizes somatosensory–motor integration functions so as to enable fine control of dexterous finger movements during piano performances.
Funder
Japan Science and Technology Corporation
Core Research for Evolutional Science and Technology
Tateishi Science and Technology Promotion Foundation
Publisher
Oxford University Press (OUP)
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献