Specialized Somatosensory–Motor Integration Functions in Musicians

Author:

Hirano Masato12,Kimoto Yudai12,Furuya Shinichi12

Affiliation:

1. Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan

2. Sophia University, Tokyo 102-8554, Japan

Abstract

Abstract Somatosensory signals play roles in the fine control of dexterous movements through a somatosensory–motor integration mechanism. While skilled individuals are typically characterized by fine-tuned somatosensory functions and dexterous motor skills, it remains unknown whether and in what manner their bridging mechanism, the tactile–motor and proprioceptive–motor integration functions, plastically changes through extensive sensorimotor experiences. Here, we addressed this issue by comparing physiological indices of these functions between pianists and nonmusicians. Both tactile and proprioceptive stimuli to the right index finger inhibited corticospinal excitability measured by a transcranial magnetic stimulation method. However, the tactile and proprioceptive stimuli exerted weaker and stronger inhibitory effects, respectively, on corticospinal excitability in pianists than in nonmusicians. The results of the electroencephalogram measurements revealed no significant group difference in the amplitude of cortical responses to the somatosensory stimuli around the motor and somatosensory cortices, suggesting that the group difference in the inhibitory effects reflects neuroplastic adaptation of the somatosensory–motor integration functions in pianists. Penalized regression analyses further revealed an association between these integration functions and motor performance in the pianists, suggesting that extensive piano practice reorganizes somatosensory–motor integration functions so as to enable fine control of dexterous finger movements during piano performances.

Funder

Japan Science and Technology Corporation

Core Research for Evolutional Science and Technology

Tateishi Science and Technology Promotion Foundation

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3