Longitudinal Effects of Physical Activity Change on Hippocampal Volumes over up to 12 Years in Middle and Older Age Community-Dwelling Individuals

Author:

Fraser Mark A1ORCID,Walsh Erin I12,Shaw Marnie E3,Anstey Kaarin J145,Cherbuin Nicolas1

Affiliation:

1. Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia

2. Population Health Exchange, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia

3. ANU College of Engineering & Computer Science, Australian National University, Canberra, Australian Capital Territory 2600, Australia

4. Ageing Futures Institute, University of New South Wales, Sydney, New South Wales 2052, Australia

5. Neuroscience Research Australia, Sydney, New South Wales 2031, Australia

Abstract

Abstract The objectives of this study were to investigate the long-term associations between changes in physical activity levels and hippocampal volumes over time, while considering the influence of age, sex, and APOE-ε4 genotype. We investigated the effects of change in physical activity on hippocampal volumes in 411 middle age (mean age = 47.2 years) and 375 older age (mean age = 63.1 years) adults followed up to 12 years. An annual volume decrease was observed in the left (middle age: 0.46%; older age: 0.51%) but not in the right hippocampus. Each additional 10 metabolic equivalents (METs, ~2 h of moderate exercise) increase in weekly physical activity was associated with 0.33% larger hippocampal volume in middle age (equivalent to ~1 year of typical aging). In older age, each additional MET was associated with 0.05% larger hippocampal volume; however, the effects declined with time by 0.005% per year. For older age APOE-ε4 carriers, each additional MET was associated with a 0.10% increase in hippocampal volume. No sex effects of physical activity change were found. Increasing physical activity has long-term positive effects on hippocampal volumes and appears especially beneficial for older APOE-ε4 carriers. To optimize healthy brain aging, physical activity programs should focus on creating long-term exercise habits.

Funder

National Health and Medical Research Council

Australian Research Council

ACT Health Private Practice Fund Grant

Australian Government Research Training Program

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3