Affiliation:
1. Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
2. Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt am Main, Germany
Abstract
Abstract
In contrast to classical views of working memory (WM) maintenance, recent research investigating activity-silent neural states has demonstrated that persistent neural activity in sensory cortices is not necessary for active maintenance of information in WM. Previous studies in humans have measured putative memory representations indirectly, by decoding memory contents from neural activity evoked by a neutral impulse stimulus. However, it is unclear whether memory contents can also be decoded in different species and attentional conditions. Here, we employ a cross-species approach to test whether auditory memory contents can be decoded from electrophysiological signals recorded in different species. Awake human volunteers (N = 21) were exposed to auditory pure tone and noise burst stimuli during an auditory sensory memory task using electroencephalography. In a closely matching paradigm, anesthetized female rats (N = 5) were exposed to comparable stimuli while neural activity was recorded using electrocorticography from the auditory cortex. In both species, the acoustic frequency could be decoded from neural activity evoked by pure tones as well as neutral frozen noise burst stimuli. This finding demonstrates that memory contents can be decoded in different species and different states using homologous methods, suggesting that the mechanisms of sensory memory encoding are evolutionarily conserved across species.
Funder
European Commission’s Marie Skłodowska-Curie Global
Hong Kong General Research
European Community/Hong Kong Research Grants Council Joint Research
Publisher
Oxford University Press (OUP)
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献