Spatial Attentional Selection Modulates Early Visual Stimulus Processing Independently of Visual Alpha Modulations

Author:

Gundlach C12,Moratti S34,Forschack N12,Müller M M1

Affiliation:

1. Experimental Psychology and Methods, Universität Leipzig, Leipzig, Germany

2. Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

3. Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain

4. Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain

Abstract

Abstract The capacity-limited human brain is constantly confronted with a huge amount of sensory information. Selective attention is needed for biasing neural processing towards relevant information and consequently allows meaningful interaction with the environment. Activity in the alpha-band has been proposed to be related to top-down modulation of neural inhibition and could thus represent a viable candidate to control the priority of stimulus processing. It is, however, unknown whether modulations in the alpha-band directly relate to changes in the sensory gain control of the early visual cortex. Here, we used a spatial cueing paradigm while simultaneously measuring ongoing alpha-band oscillations and steady-state visual evoked potentials (SSVEPs) as a marker of continuous early sensory processing in the human visual cortex. Thereby, the effects of spatial attention for both of these signals and their potential interactions were assessed. As expected, spatial attention modulated both alpha-band and SSVEP responses. However, their modulations were independent of each other and the corresponding activity profiles differed across task demands. Thus, our results challenge the view that modulations of alpha-band activity represent a mechanism that directly alters or controls sensory gain. The potential role of alpha-band oscillations beyond sensory processing will be discussed in light of the present results.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3