Large-scale parameters framework with large convolutional kernel for encoding visual fMRI activity information

Author:

Ma Shuxiao1ORCID,Wang Linyuan1,Hou Senbao1,Zhang Chi1ORCID,Yan Bin1

Affiliation:

1. PLA Strategic Support Force Information Engineering University Henan Key Laboratory of Imaging and Intelligent Processing, , Zhengzhou, 450000, China

Abstract

Abstract Visual encoding models often use deep neural networks to describe the brain’s visual cortex response to external stimuli. Inspired by biological findings, researchers found that large receptive fields built with large convolutional kernels improve convolutional encoding model performance. Inspired by scaling laws in recent years, this article investigates the performance of large convolutional kernel encoding models on larger parameter scales. This paper proposes a large-scale parameters framework with a sizeable convolutional kernel for encoding visual functional magnetic resonance imaging activity information. The proposed framework consists of three parts: First, the stimulus image feature extraction module is constructed using a large-kernel convolutional network while increasing channel numbers to expand the parameter size of the framework. Second, enlarging the input data during the training stage through the multi-subject fusion module to accommodate the increase in parameters. Third, the voxel mapping module maps from stimulus image features to functional magnetic resonance imaging signals. Compared to sizeable convolutional kernel visual encoding networks with base parameter scale, our visual encoding framework improves by approximately 7% on the Natural Scenes Dataset, the dedicated dataset for the Algonauts 2023 Challenge. We further analyze that our encoding framework made a trade-off between encoding performance and trainability. This paper confirms that expanding parameters in visual coding can bring performance improvements.

Funder

National Natural Science Foundation of China

Major Projects of Technological Innovation 2030 of China

Publisher

Oxford University Press (OUP)

Reference25 articles.

1. A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence;Allen;Nat Neurosci,2022

2. Understanding and accelerating neural architecture search with training-free and theory-grounded metrics;Chen;IEEE Trans Pattern Anal Mach Intell,2024

3. Scaling up your kernels to 31x31: revisiting large kernel design in CNNs;Ding;Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

4. UniRepLKNet: a universal perception large-kernel ConvNet for audio, video, point cloud;Ding

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3