Diversity of Feature Selectivity in Macaque Visual Cortex Arising from a Limited Number of Broadly Tuned Input Channels

Author:

Mohan Yamni S1,Jayakumar Jaikishan12,Lloyd Errol K J1,Levichkina Ekaterina13,Vidyasagar Trichur R14

Affiliation:

1. Department of Optometry & Vision Science, University of Melbourne, Parkville, Victoria, Australia

2. Centre for Computational Brain Research, Indian Institute of Technology-Madras, Chennai, India

3. Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia

4. Melbourne Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia

Abstract

AbstractSpike (action potential) responses of most primary visual cortical cells in the macaque are sharply tuned for the orientation of a line or an edge, and neurons preferring similar orientations are clustered together in cortical columns. The preferred stimulus orientation of these columns span the full range of orientations, as observed in recordings of spikes and in classical optical imaging of intrinsic signals. However, when we imaged the putative thalamic input to striate cortical cells that can be seen in imaging of intrinsic signals when they are analyzed on a larger spatial scale, we found that the orientation domain map of the primary visual cortex did not show the same diversity of orientations. This map was dominated by just the one orientation that is most commonly preferred by neurons in the retina and the lateral geniculate nucleus. This supports cortical feature selectivity and columnar architecture being built upon feed-forward signals transmitted from the thalamus in a very limited number of broadly tuned input channels.

Funder

Australian National Health and Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3