The Na+/H+ Exchanger Nhe1 Modulates Network Excitability via GABA Release

Author:

Bocker Hartmut T1ORCID,Heinrich Theresa2ORCID,Liebmann Lutz1,Hennings J Christopher1ORCID,Seemann Eric3ORCID,Gerth Melanie1,Jakovčevski Igor4,Preobraschenski Julia5,Kessels Michael M3,Westermann Martin6,Isbrandt Dirk4,Jahn Reinhard5,Qualmann Britta3,Hübner Christian A1ORCID

Affiliation:

1. Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany

2. Department GMP Cell and Gene Therapy, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany

3. Institute of Biochemistry I, Jena University Hospital, 07743 Jena, Germany

4. Institute for Molecular and Behavioral Neuroscience, University of Cologne, 50937 Cologne, Germany, and German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany

5. Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany

6. Electron Microscopy Center, Jena University Hospital, 07747 Jena, Germany

Abstract

Abstract Brain functions are extremely sensitive to pH changes because of the pH-dependence of proteins involved in neuronal excitability and synaptic transmission. Here, we show that the Na+/H+ exchanger Nhe1, which uses the Na+ gradient to extrude H+, is expressed at both inhibitory and excitatory presynapses. We disrupted Nhe1 specifically in mice either in Emx1-positive glutamatergic neurons or in parvalbumin-positive cells, mainly GABAergic interneurons. While Nhe1 disruption in excitatory neurons had no effect on overall network excitability, mice with disruption of Nhe1 in parvalbumin-positive neurons displayed epileptic activity. From our electrophysiological analyses in the CA1 of the hippocampus, we conclude that the disruption in parvalbumin-positive neurons impairs the release of GABA-loaded vesicles, but increases the size of GABA quanta. The latter is most likely an indirect pH-dependent effect, as Nhe1 was not expressed in purified synaptic vesicles itself. Conclusively, our data provide first evidence that Nhe1 affects network excitability via modulation of inhibitory interneurons.

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3