Affiliation:
1. Department of Neurology, General Hospital, Tianjin Medical University, China
2. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China
3. Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, China
Abstract
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and mesenchymal stem cells (MSCs) transplantation both showed therapeutic effects on cognition impairment in vascular dementia (VD) model rats. However, whether these two therapies have synergistic effects and the molecular mechanisms remain unclear. In our present study, rats were randomly divided into six groups: control group, sham operation group, VD group, MSC group, rTMS group, and MSC+rTMS group. The VD model rats were prepared using a modified 2VO method. rTMS treatment was implemented at a frequency of 5 Hz, the stimulation intensity for 0.5 Tesla, 20 strings every day with 10 pulses per string and six treatment courses. The results of the Morris water maze test showed that the learning and memory abilities of the MSC group, rTMS group, and MSC+rTMS group were better than that of the VD group, and the MSC+rTMS group showed the most significant effect. The protein expression levels of brain-derived neurotrophic factor, NR1, LC3-II, and Beclin-1 were the highest and p62 protein was the lowest in the MSC+rTMS group. Our findings demonstrated that rTMS could further enhance the effect of MSC transplantation on VD rats and provided an important basis for the combined application of MSC transplantation and rTMS to treat VD or other neurological diseases.
Funder
Chinese National Natural Science Foundation
Key project of Tianjin Research Program of Application Foundation and Advanced Technology
Foundation of Key Laboratory of Genetic Engineering of the Ministry of Education
Publisher
Oxford University Press (OUP)
Subject
Geriatrics and Gerontology,Aging
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献