Ameliorating Effects of Lifelong Physical Activity on Healthy Aging and Mitochondrial Function in Human White Adipose Tissue

Author:

Gudiksen Anders1ORCID,Qoqaj Albina1,Ringholm Stine1,Wojtaszewski Jørgen2,Plomgaard Peter34,Pilegaard Henriette1

Affiliation:

1. Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark

2. Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark

3. Department of Clinical Biochemistry and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

4. Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

Abstract

Abstract Growing old is patently among the most prominent risk factors for lifestyle-related diseases and deterioration in physical performance. Aging in particular affects mitochondrial homeostasis, and maintaining a well-functioning mitochondrial pool is imperative in order to avoid age-associated metabolic decline. White adipose tissue (WAT) is a key organ in energy balance, and impaired mitochondrial function in adipocytes has been associated with increased low-grade inflammation, altered metabolism, excessive reactive oxygen species (ROS) production, and an accelerated aging phenotype. Exercise training improves mitochondrial health but whether lifelong exercise training can sufficiently maintain WAT mitochondrial function is currently unknown. Therefore, to dissect the role and dose-dependence of lifelong exercise training on aging WAT metabolic parameters and mitochondrial function, young and older untrained, as well as moderately and highly exercise trained older male subjects were recruited and abdominal subcutaneous (s)WAT biopsies and venous blood samples were obtained to measure mitochondrial function and key metabolic factors in WAT and plasma. Mitochondrial intrinsic respiratory capacity was lower in sWAT from older than from young subjects. In spite of this, maximal mitochondrial respiration per wet weight, markers of oxidative capacity, and mitophagic capacity were higher in sWAT from the lifelong highly exercise trained group than all other groups. Furthermore, ROS emission was generally lower in sWAT from lifelong highly exercise trained subjects than older untrained subjects. Taken together, aging reduces intrinsic mitochondrial respiration in human sWAT, but lifelong high-volume exercise training increases oxidative capacity by increasing mitochondrial volume likely contributing to healthy aging.

Funder

Danish Ministry of Culture

Novo Nordisk Foundation

Publisher

Oxford University Press (OUP)

Subject

Geriatrics and Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3