Metabolic Rate and Oxygen Radical Levels Increase But Radical Generation Rate Decreases with Male Age in Drosophila melanogaster Sperm

Author:

Turnell Biz R1ORCID,Reinhardt Klaus1

Affiliation:

1. Applied Zoology, Faculty Biology, Technische Universität Dresden, Germany

Abstract

Abstract Oxidative damage increases with age in a variety of cell types, including sperm, which are particularly susceptible to attack by reactive oxygen species (ROS). While mitochondrial respiration is the main source of cellular ROS, the relationship between the rates of aerobic metabolism and ROS production, and how this relationship may be affected by age, both in sperm and in other cell types, is unclear. Here, we investigate in Drosophila melanogaster sperm, the effects of male age on (i) the level of hydrogen peroxide in the mitochondria, using a transgenic H2O2 reporter line; (ii) the in situ rate of non-H2O2 ROS production, using a novel biophysical method; and (iii) metabolic rate, using fluorescent lifetime imaging microscopy. Sperm from older males had higher mitochondrial ROS levels and a higher metabolic rate but produced ROS at a lower rate. In comparison, a somatic tissue, the gut epithelium, also showed an age-related increase in mitochondrial ROS levels but a decrease in metabolic rate. These results support the idea of a tissue-specific optimal rate of aerobic respiration balancing the production and removal of ROS, with aging causing a shift away from this optimum and leading to increased ROS accumulation. Our findings also support the view that pathways of germline and somatic aging can be uncoupled, which may have implications for male infertility treatments.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Geriatrics and Gerontology,Aging

Reference53 articles.

1. Paternal age and reproduction;Sartorius;Hum Reprod Update,2010

2. Quantitative effects of male age on sperm motion;Sloter;Hum Reprod,2006

3. Sperm count and sperm motility decrease in old rats;Lucio;Physiol Behav,2013

4. Senescent sperm performance in old male birds;Møller;J Evol Biol,2009

5. The redox stress hypothesis of aging;Sohal;Free Radic Biol Med,2012

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3