Affiliation:
1. Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Learning and Research Building, Southmead Hospital , Bristol , UK
Abstract
Abstract
An imbalance in the renin–angiotensin system (RAS) is associated with cognitive decline and disease pathology in Alzheimer’s disease (AD). In this study, we have investigated changes in the brain angiotensin-converting enzyme-1 (ACE-1) and angiotensin-II (Ang-II), and the counter-regulatory angiotensin-converting enzyme-2 (ACE-2), in the frontal and temporal cortex during normal aging and in the early stages of AD. We studied a cohort of normal aging (n = 121; 19–95 years age-at-death) from the Sudden Death Brain Bank, University of Edinburgh, United Kingdom, and AD and age-matched controls (n = 60) from the South West Dementia Brain Bank, University of Bristol, United Kingdom, stratified according to Braak tangle stage (BS): 0–II, III–IV (intermediate disease), and V–VI (end-stage disease). ACE-1 and ACE-2 enzyme activity were measured using fluorogenic peptide activity assays. ACE-1, ACE-2, and Ang-II protein level were measured by enzyme-linked immunosorbent assay (ELISA). In both regions, ACE-1 protein and Ang-II levels correlated positively with age whereas ACE-1 enzyme activity was inversely related to age. ACE-1 protein correlated positively with Ang-II, whilst ACE-1 activity correlated inversely with Ang-II in normal aging. ACE-1 enzyme activity was elevated at an early/intermediate stage, BS III–IV compared to BS 0–II in the temporal cortex in AD. ACE-2 protein and enzyme activity were unchanged with aging and in AD. In conclusion, ACE-1 activity is induced in the early stages of AD independently from normal physiological age-related changes in ACE-1 protein.
Publisher
Oxford University Press (OUP)
Subject
Geriatrics and Gerontology,Aging
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献