Aging Alters Phenotypic Traits of Thyroid Dysfunction in Male Mice With Divergent Effects on Complex Systems but Preserved Thyroid Hormone Action in Target Organs

Author:

Engels Kathrin1,Rakov Helena1,Hönes Georg Sebastian1,Brix Klaudia2,Köhrle Josef3,Zwanziger Denise14,Moeller, Lars Christian1,Führer Dagmar14,Führer-Sakel DagmarORCID

Affiliation:

1. Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany

2. Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany

3. Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany

4. Clinical Chemistry – Division of Research, University Hospital Essen, University Duisburg-Essen, Germany

Abstract

Abstract Clinical manifestation of hyperthyroidism and hypothyroidism vary with age, with an attenuated, oligosymptomatic presentation of thyroid dysfunction (TD) in older patients. We asked, whether in rodents TD phenotypes are influenced by age and whether this involves changes in systemic and/or organ thyroid hormone (TH) signaling. Chronic hyper- or hypothyroidism was induced in male mice at different life stages (5, 12, and 20 months). TH excess resulted in pronounced age-specific body weight changes (increase in youngest and decrease in old mice), neither explained by changes in food intake (similar increase at all ages), nor by thermogenic gene expression in brown adipose tissue (BAT) or TH serum concentrations. Relative increase in body temperature and activity were more pronounced in old compared to young hyperthyroid mice. An attenuated hypothyroid state was found in old mice for locomotor activity and in heart and BAT on functional (less bradycardia) and gene expression level (heart and BAT). In contrast, decrease in body weight was pronounced in old hypothyroid mice. Thus, age has divergent impact on features of TD in mice, whereby effects on highly complex systems, such as energy homeostasis are not proportional to serum TH state, in contrast to organ-specific responses in heart and BAT.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Geriatrics and Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3