Fractal Complexity of Daily Physical Activity Patterns Differs With Age Over the Life Span and Is Associated With Mortality in Older Adults

Author:

Raichlen David A1,Klimentidis Yann C23,Hsu Chiu-Hsieh2,Alexander Gene E34567

Affiliation:

1. School of Anthropology, Mel and Enid Zuckerman College of Public Health, Tucson

2. Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, Tucson

3. BIO5 Institute, University of Arizona, Tucson

4. Departments of Psychology and Psychiatry

5. Evelyn F. McKnight Brain Institute

6. Neuroscience Graduate Interdisciplinary Program

7. Physiological Sciences Graduate Interdisciplinary Program

Abstract

Abstract Background Accelerometers are included in a wide range of devices that monitor and track physical activity for health-related applications. However, the clinical utility of the information embedded in their rich time-series data has been greatly understudied and has yet to be fully realized. Here, we examine the potential for fractal complexity of actigraphy data to serve as a clinical biomarker for mortality risk. Methods We use detrended fluctuation analysis (DFA) to analyze actigraphy data from the National Health and Nutrition Examination Survey (NHANES; n = 11,694). The DFA method measures fractal complexity (signal self-affinity across time-scales) as correlations between the amplitude of signal fluctuations in time-series data across a range of time-scales. The slope, α, relating the fluctuation amplitudes to the time-scales over which they were measured describes the complexity of the signal. Results Fractal complexity of physical activity (α) decreased significantly with age (p = 1.29E−6) and was lower in women compared with men (p = 1.79E−4). Higher levels of moderate-to-vigorous physical activity in older adults and in women were associated with greater fractal complexity. In adults aged 50–79 years, lower fractal complexity of activity (α) was associated with greater mortality (hazard ratio = 0.64; 95% confidence interval = 0.49–0.82) after adjusting for age, exercise engagement, chronic diseases, and other covariates associated with mortality. Conclusions Wearable accelerometers can provide a noninvasive biomarker of physiological aging and mortality risk after adjusting for other factors strongly associated with mortality. Thus, this fractal analysis of accelerometer signals provides a novel clinical application for wearable accelerometers, advancing efforts for remote monitoring of physiological health by clinicians.

Funder

National Institute on Aging

National Science Foundation

Arizona Department of Health Services

Ken and Linda Robin

McKnight Brain Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Geriatrics and Gerontology,Ageing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3