Adaptive Metabolic and Inflammatory Responses Identified Using Accelerated Aging Metrics Are Linked to Adverse Outcomes in Severe SARS-CoV-2 Infection

Author:

Márquez-Salinas Alejandro12,Fermín-Martínez Carlos A23,Antonio-Villa Neftalí Eduardo23,Vargas-Vázquez Arsenio23ORCID,Guerra Enrique C12,Campos-Muñoz Alejandro3,Zavala-Romero Lilian4,Mehta Roopa3,Bahena-López Jessica Paola2,Ortiz-Brizuela Edgar5,González-Lara María Fernanda6,Roman-Montes Carla M6,Martinez-Guerra Bernardo A6,Ponce de Leon Alfredo6,Sifuentes-Osornio José56,Gutiérrez-Robledo Luis Miguel1,Aguilar-Salinas Carlos A37,Bello-Chavolla Omar Yaxmehen13ORCID

Affiliation:

1. Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico

2. MD/PhD (PECEM), Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico

3. Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico

4. AFINES, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico

5. Infectology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico

6. Direction of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico

7. Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Nuevo León, Mexico

Abstract

Abstract Background Chronological age (CA) is a predictor of adverse coronavirus disease 2019 (COVID-19) outcomes; however, CA alone does not capture individual responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we evaluated the influence of aging metrics PhenoAge and PhenoAgeAccel to predict adverse COVID-19 outcomes. Furthermore, we sought to model adaptive metabolic and inflammatory responses to severe SARS-CoV-2 infection using individual PhenoAge components. Method In this retrospective cohort study, we assessed cases admitted to a COVID-19 reference center in Mexico City. PhenoAge and PhenoAgeAccel were estimated using laboratory values at admission. Cox proportional hazards models were fitted to estimate risk for COVID-19 lethality and adverse outcomes (intensive care unit admission, intubation, or death). To explore reproducible patterns which model adaptive responses to SARS-CoV-2 infection, we used k-means clustering using PhenoAge components. Results We included 1068 subjects of whom 222 presented critical illness and 218 died. PhenoAge was a better predictor of adverse outcomes and lethality compared to CA and SpO2 and its predictive capacity was sustained for all age groups. Patients with responses associated to PhenoAgeAccel >0 had higher risk of death and critical illness compared to those with lower values (log-rank p < .001). Using unsupervised clustering, we identified 4 adaptive responses to SARS-CoV-2 infection: (i) inflammaging associated with CA, (ii) metabolic dysfunction associated with cardiometabolic comorbidities, (iii) unfavorable hematological response, and (iv) response associated with favorable outcomes. Conclusions Adaptive responses related to accelerated aging metrics are linked to adverse COVID-19 outcomes and have unique and distinguishable features. PhenoAge is a better predictor of adverse outcomes compared to CA.

Funder

CONACyT

Publisher

Oxford University Press (OUP)

Subject

Geriatrics and Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3