Cross-sectional Association Between Plasma Biomarkers and Multimorbidity Patterns in Older Adults

Author:

Vázquez-Fernández Aitana12ORCID,Lana Alberto3ORCID,Struijk Ellen A12ORCID,Vega-Cabello Verónica12ORCID,Cárdenas-Valladolid Juan45,Salinero-Fort Miguel Ángel67,Rodríguez-Artalejo Fernando128,Lopez-Garcia Esther128ORCID,Caballero Francisco Félix12ORCID

Affiliation:

1. Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid , Madrid , Spain

2. CIBERESP (CIBER of Epidemiology and Public Health) , Madrid , Spain

3. Department of Medicine, School of Medicine and Health Sciences, Universidad de Oviedo/ISPA , Oviedo , Spain

4. Dirección Técnica de Sistemas de Información, Gerencia Asistencial de Atención Primaria, Servicio Madrileño de Salud, Fundación de Investigación e Innovación Biosanitaria de Atención Primaria , Madrid , Spain

5. Enfermería, Universidad Alfonso X El Sabio , Villanueva de la Cañada , Spain

6. Subdirección General de Investigación Sanitaria, Consejería de Sanidad, Fundación de Investigación e Innovación Biosanitaria de Atención Primaria , Madrid , Spain

7. Red de Investigación en Servicios de Salud en Enfermedades Crónicas, Grupo de Envejecimiento y Fragilidad de las personas mayores, IdIPAZ , Madrid , Spain

8. IMDEA-Food Institute, CEI UAM+CSIC , Madrid , Spain

Abstract

Abstract Multimorbidity is the simultaneous presence of 2 or more chronic conditions. Metabolomics could identify biomarkers potentially related to multimorbidity. We aimed to identify groups of biomarkers and their association with different multimorbidity patterns. Cross-sectional analyses were conducted within the Seniors-ENRICA-2 cohort in Spain, with information from 700 individuals aged ≥65 years. Biological samples were analyzed using high-throughput proton nuclear magnetic resonance metabolomics. Biomarker groups were identified with exploratory factor analysis, and multimorbidity was classified into 3 types: cardiometabolic, neuropsychiatric, and musculoskeletal. Logistic regression was used to estimate the association between biomarker groups and multimorbidity patterns, after adjusting for potential confounders including sociodemographics, lifestyle, and body mass index. Three factors were identified: the “lipid metabolism” mainly reflected biomarkers related to lipid metabolism, such as very-low-density lipoprotein and low-density lipoprotein cholesterol; the “high-density lipoprotein cholesterol” mainly included high-density lipoprotein cholesterol subclasses and other lipids not included in the first factor; and the “amino acid/glycolysis/ketogenesis,” composed of some amino acids, glycolysis-related metabolites, and ketone bodies. Higher scores in the “lipid metabolism” factor were associated with a higher likelihood of cardiometabolic multimorbidity, odds ratio for tertile 3 versus tertile 1 was 1.79 (95% confidence interval: 1.17–2.76). The “high-density lipoprotein cholesterol” factor was associated with lower odds of cardiometabolic multimorbidity [0.51 (0.32–0.82)], and the “amino acid/glycolysis/ketogenesis” factor was associated with more frequent cardiometabolic multimorbidity [1.85 (1.18–2.90)]. Different metabolomic biomarkers are associated with different multimorbidity patterns; therefore, multiple biomarker measurements are needed for a complete picture of the molecular mechanisms of multimorbidity.

Funder

Instituto de Salud Carlos III

European Regional Development Fund

Publisher

Oxford University Press (OUP)

Subject

Geriatrics and Gerontology,Aging

Reference50 articles.

1. Defining and measuring multimorbidity: a systematic review of systematic reviews;Johnston,2019

2. Multimorbidity and mortality in older adults: a systematic review and meta-analysis;Nunes,2016

3. Aging and the burden of multimorbidity: associations with inflammatory and anabolic hormonal biomarkers;Fabbri,2015

4. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases;Franceschi,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3