Differentiated Zn(II) binding affinities in animal, plant, and bacterial metallothioneins define their zinc buffering capacity at physiological pZn

Author:

Mosna Karolina1ORCID,Jurczak Kinga1,Krężel Artur1ORCID

Affiliation:

1. Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław , Joliot-Curie 14a, 50-383 Wrocław , Poland

Abstract

Abstract Metallothioneins (MTs) are small, Cys-rich proteins present in various but not all organisms, from bacteria to humans. They participate in zinc and copper metabolism, toxic metals detoxification, and protection against reactive species. Structurally, they contain one or multiple domains, capable of binding a variable number of metal ions. For experimental convenience, biochemical characterization of MTs is mainly performed on Cd(II)-loaded proteins, frequently omitting or limiting Zn(II) binding features and related functions. Here, by choosing 10 MTs with relatively well-characterized structures from animals, plants, and bacteria, we focused on poorly investigated Zn(II)-to-protein affinities, stability–structure relations, and the speciation of individual complexes. For that purpose, MTs were characterized in terms of stoichiometry, pH-dependent Zn(II) binding, and competition with chromogenic and fluorescent probes. To shed more light on protein folding and its relation with Zn(II) affinity, reactivity of variously Zn(II)-loaded MTs was studied by (5,5ʹ-dithiobis(2-nitrobenzoic acid) oxidation in the presence of mild chelators. The results show that animal and plant MTs, despite their architectural differences, demonstrate the same affinities to Zn(II), varying from nano- to low picomolar range. Bacterial MTs bind Zn(II) more tightly but, importantly, with different affinities from low picomolar to low femtomolar range. The presence of weak, moderate, and tight zinc sites is related to the folding mechanisms and internal electrostatic interactions. Differentiated affinities of all MTs define their zinc buffering capacity required for Zn(II) donation and acceptance at various free Zn(II) concentrations (pZn levels). The data demonstrate critical roles of individual Zn(II)-depleted MT species in zinc buffering processes.

Funder

National Science Centre, Poland

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3