Self-assembly synthesis of diorganotin complexes based on arylformylhydrazone possessing ONO donor set: anticancer activity and mechanism

Author:

Jiang Wujiu1ORCID,Zhang Zhijian1,Ni Penghui1,Tan Yuxing1ORCID

Affiliation:

1. Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Organometallic New Materials, College of Hunan Province, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of XiangJiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, China

Abstract

Abstract Fourteen new organotin(IV) complexes were successfully synthesized and characterized by elemental analyses, Fourier transform infrared spectroscopy (FT-IR), multinuclear (1H, 13C, and 119Sn) NMR spectroscopy, high-resolution mass spectrometry (HRMS), and X-ray single-crystal techniques. Crystallographic data showed that the complexes 1b, 2b, 3b, and 5b were macrocyclic compounds, 4b exhibited a one-dimensional spiral chain structure with distorted trigonal bipyramidal geometry, other complexes were centrosymmetric dimers, and there was an Sn2O2 four-membered ring in the middle of the molecule. In-vitro anticancer activity against the three human tumor cell lines NCI-H460, MCF-7, and HepG2 was studied, and the dibutyltin complex 5a is a more potent antitumor agent than other complexes and cisplatin. Cell apoptosis study of 5a with the highest activity on HepG2 cancer cell lines was done by flow cytometry; it was shown that the antitumor activity of 5a was related to apoptosis, and it inhibited proliferation by blocking cells in the G2/M phase. The single-cell gel electrophoresis assay results show that 5a induces DNA damage. 5a interacts with ct-DNA by intercalating the mode of interaction. UV–visible absorption spectrometry, fluorescence competitive, viscosity measurements, and gel electrophoresis results also support the intercalative mode of interaction for 5a with DNA.

Funder

Fund of Hunan Provincial Education Department of China

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3