Imaging the structural organization of chemical elements in growth cones of developing hippocampal neurons

Author:

Carmona Asuncion1ORCID,Chen Si2ORCID,Domart Florelle13ORCID,Choquet Daniel34ORCID,Ortega Richard1ORCID

Affiliation:

1. Univ. Bordeaux, CNRS, CENBG, UMR 5797, 33170 Gradignan, France

2. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA

3. Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France

4. Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, 33000 Bordeaux, France

Abstract

Abstract During neurodevelopment, neurons form growth cones, F-actin rich extensions located at the distal end of the neurites. Growth cones allow dendrites and axons to build synaptic connections through a process of neurite guidance whose mechanisms have not been fully elucidated. Calcium is an important element in this process by inducing F-actin reorganization. We hypothesized that other biologically active elements might be involved in the growth cone-mediated neurite guidance mechanisms. We performed super resolution and confocal microscopy of F-actin, followed by synchrotron X-ray fluorescence microscopy of phosphorous, sulfur, chlorine, potassium, calcium, iron and zinc on growth cones from primary rat hippocampal neurons. We identified two main patterns of element organization. First, active growth cones presenting an asymmetric distribution of Ca co-localized with the cytoskeleton protein F-actin. In active growth cones, we found that the distributions of P, S, Cl, K, and Zn are correlated with Ca. This correlation is lost in the second pattern, quiescent growth cones, exhibiting a spread elemental distribution. These results suggest that Ca is not the only element required in the F-actin rich active regions of growth cones. In addition, highly concentrated Fe spots of submicrometer size were observed in calcium-rich areas of active growth cones. These results reveal the need for biological active elements in growth cones during neural development and may help explain why early life deficiencies of elements, such as Fe or Zn, induce learning and memory deficits in children.

Funder

Centre National de la Recherche Scientifique

Université de Bordeaux

European Research Council

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3