Atp7b deficiency induces zebrafish eye developmental defects

Author:

Wu You1,Liu Wenye1,Li Lingya1,Tai Zhipeng1,Gao BaoXiang2,Liu Jing-Xia1

Affiliation:

1. College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University , Wuhan 430070 , China

2. Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding, Hebei 071002 , China

Abstract

Abstract As a copper (Cu) transport ATPase, ATP7B plays an important role in maintaining Cu homeostasis in the body and its dysfunction is associated with retinal disease. How ATP7B dysfunction and the subsequent Cu overload induce retinal damage, however, are unknown. Here, we show that atp7b−/− homozygous zebrafish larvae are insensitive to light stimulation, with a reduction in retinal cells but normal like morphological phenotypes. Additionally, a series of differentially expressed genes are unveiled in atp7b−/− mutated larvae, which enrich in photo-transduction, structural constituent of eye lens, sensory perception of light stimulus, oxidative phosphorylation, and ATPase activity. Moreover, we show the Cu accumulation in retinal cells in atp7b−/− mutated larvae, which results in endoplasmic reticulum (ER) stress and retinal cell apoptosis and subsequent retinal defects. The integral data in this study demonstrate that atp7b mutation leads to Cu accumulation in zebrafish retinal cells and the consequence ER stress and retinal cell death. These data may give some possible hints to explain retinal disease occurred in the Cu dysregulation syndromes Wilson’s disease with ATP7B mutation.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Knowledge Innovation Program of Wuhan-Basic Research

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3