Physiological responses of plants to in vivo X-ray damage from X-ray fluorescence measurements: insights from anatomical, elemental, histochemical, and ultrastructural analyses

Author:

Montanha Gabriel Sgarbiero12,Marques João Paulo Rodrigues3,Santos Eduardo1,Jones Michael W M4,de Carvalho Hudson Wallace Pereira1

Affiliation:

1. Laboratory of Nuclear Instrumentation, Centre for Nuclear Energy in Agriculture, University of São Paulo , Piracicaba , Brazil

2. Biology and Biotechnology Department “Charles Darwin”, Sapienza University of Rome , Rome , Italy

3. Department of Basic Sciences, Faculty of Animal Science and Food Engineering, University of São Paulo , Pirassununga, Brazil

4. School of Chemistry and Physics, Queensland University of Technology; Central Analytical Research Facility, Queensland University of Technology , Brisbane , Australia

Abstract

Abstract X-ray fluorescence spectroscopy (XRF) is a powerful technique for the in vivo assessment of plant tissues. However, the potential X-ray exposure damages might affect the structure and elemental composition of living plant tissues, leading to artefacts in the recorded data. Herein, we exposed in vivo soybean (Glycine max (L.) Merrill) leaves to several X-ray doses through a polychromatic benchtop microprobe X-ray fluorescence spectrometer, modulating the photon flux density by adjusting either the beam size, current, or exposure time. Changes in the irradiated plant tissues’ structure, ultrastructure, and physiology were investigated through light and transmission electron microscopy (TEM). Depending on X-ray exposure dose, decreased K and X-ray scattering intensities and increased Ca, P, and Mn signals on soybean leaves were recorded. Anatomical analysis indicated the necrosis of epidermal and mesophyll cells on the irradiated spots, where TEM images revealed the collapse of cytoplasm and cell wall breaking. Furthermore, the histochemical analysis detected the production of reactive oxygen species and the inhibition of chlorophyll autofluorescence in these areas. Under certain X-ray exposure conditions, e.g. high photon flux density and long exposure time, XRF measurements may affect the soybean leaves structures, elemental composition, and cellular ultrastructure, inducing programmed cell death. Our characterization shed light on the plant's responses to the X-ray-induced radiation damage and might help to establish proper X-ray radiation limits and novel strategies for in vivo benchtop-XRF analysis of vegetal materials.

Funder

São Paulo Research Foundation

CNPq

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3